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Abstract
Management of plant litter or crop residues in agricultural fields is an important consideration for reducing soil erosion and

increasing soil organic C. Current methods of quantifying crop residue cover are inadequate for characterizing the spatial variability

of residue cover within fields or across large regions. Our objectives were to evaluate several spectral indices for measuring crop

residue cover using satellite multispectral and hyperspectral data and to categorize soil tillage intensity in agricultural fields.

Landsat Thematic Mapper (TM) and EO-1 Hyperion imaging spectrometer data were acquired over agricultural fields in central

Iowa in May and June 2004. Crop residue cover was measured in corn (Zea mays L.) and soybean (Glycine max Merr.) fields using

line-point transects. Spectral residue indices using Landsat TM bands were weakly related to crop residue cover. With the Hyperion

data, crop residue cover was linearly related to the cellulose absorption index (CAI), which measures the relative intensity of

cellulose and lignin absorption features near 2100 nm. Coefficients of determination (r2) for crop residue cover as a function of CAI

were 0.85 for the May and 0.77 for the June Hyperion data. Three tillage intensity classes, corresponding to intensive (<15%

residue cover), reduced (15–30% cover) and conservation (>30% cover) tillage, were correctly identified in 66–68% of fields.

Classification accuracy increased to 80–82% for two classes, corresponding to conventional (intensive + reduced) and conservation

tillage. By combining information on previous season’s (2003) crop classification with crop residue cover after planting in 2004, an

inventory of soil tillage intensity by previous crop type was generated for the whole Hyperion scene. Regional surveys of soil

management practices that affect soil conservation and soil C dynamics are possible using advanced multispectral or hyperspectral

imaging systems.
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1. Introduction

Soils can function as either sources or sinks for

atmospheric CO2 depending on several factors includ-
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ing soil properties, land use and management. The

potential for C sequestration in soils is significant based

on presumed recapture following the large decreases in

soil organic C that occurred when native forests and

grasslands were converted to agriculture (Lal et al.,

1999). Depletion of soil C is accentuated by soil

degradation and intensified by soil mismanagement.

Long-term use of conservation tillage practices can lead

to increased soil organic matter, improved soil structure

and increased aggregation compared to intensively
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tilled soils (Rasmussen and Rohde, 1988). Adoption of

appropriate conservation and restoration practices can

build up soil organic C by preserving the input of C

through crop residue and by decreasing C loss from soil

erosion (Lal, 2004).

Since changes in soil organic C occur slowly,

biogeochemical models simulating C dynamics are

often used to predict net C sequestration for different

soil types and land management. These models of C

dynamics range from simple empirical applications-

oriented models to complex research-oriented models

(Ma and Shaffer, 2001). Empirical models correlate

ecosystem-scale processes with parameters that are

readily measured in the field and, as a result, may

simplify some important functional relationships.

Biogeochemical models emphasize the underlying

biological, chemical and physical processes that control

C transformations, but tend to be localized (i.e., point-

based) because of their detailed input data require-

ments.

Linkage of biogeochemical models to geographic

information systems (GIS) has blurred the spatial-scale

distinction between empirical and process models.

However, the lack of appropriate data to support these

process models across a wide range of soil and land

management scenarios continues to be a major issue

limiting their usability (Ma and Shaffer, 2001). Crop

management and soil tillage practices vary spatially

(field to field) and temporally (year to year) as

individual growers adjust their management strategies

to changing economic and environmental conditions.

Robust approaches for extending process C models

from isolated points to landscape and regional scales

have not been identified and evaluated. While current

remote sensing techniques cannot directly monitor soil

C dynamics, recent advances in remote sensing of soils

and crop residues can potentially provide some of the

spatially variable biophysical parameters needed by

these models to predict C dynamics across landscapes.

Spectral reflectance of soils is primarily determined

by moisture, iron oxides, organic matter, particle-size

distribution, mineralogy and soil structure (Baumgard-

ner et al., 1985). In perhaps the most comprehensive

study of the reflectance of soil, Stoner and Baumgardner

(1981) defined five general classes of soil reflectance

spectra and identified organic matter and iron oxide

contents as the primary factors determining shape of the

reflectance spectra. Soil reflectance generally increased

as soil moisture, particle-size, surface roughness,

organic matter content and iron oxide content

decreased. Spectral reflectance is strongly correlated

with organic matter content among soils from the same
parent materials; however, the relationship is sensitive

to changes in iron and manganese oxides in soils from

different parent materials.

Remote sensing as aerial photography has been a

tool in the mapping of soils for more than 50 years. The

synoptic view of the soil in the landscape and the tonal

variations in photographs and multispectral images

enhanced the delineation of soil boundaries and

identification of inclusions within the predominant soil

series (Baumgardner et al., 1985). Important soil

properties for crop growth related to water holding

capacity and fertility can be indirectly estimated by

remote sensing of vegetation. Spatial patterns in

remotely sensed images and crop yield maps over

several years have been analyzed to identify areas

within fields with similar crop responses (Gish et al.,

2002). These homogenous zones may be used to guide

soil sampling and form the basis for adjusting nutrient

application rates using variable rate technology.

Crop residue management is an integral component

of most conservation tillage systems. The Conservation

Technology Information Center (CTIC) has defined

conservation tillage as any tillage and planting system

that has >30% residue cover after planting (CTIC,

2004). Annual assessments of crop residue cover and

tillage practices in selected counties are compiled from

roadside surveys in selected counties of the U.S. These

surveys are subjective and the techniques vary from

county to county (Thoma et al., 2004). No program

exists for objectively monitoring tillage over broad

areas.

Remote sensing provides efficient and objective

methods of obtaining information about crop conditions

cover over large areas (e.g., Bauer, 1985; Doraiswamy

et al., 2001). Robust spectral vegetation indices have

been developed to quantify green vegetation by

exploiting the characteristic shape of the green

vegetation spectrum with its high reflectance of the

near infrared (700–1000 nm) and its low reflectance of

the visible (400–700 nm). However, development of

remote sensing indices for assessing crop residue cover

has been impeded, because soils and crop residues lack

unique spectral signatures in the 400–1100 nm region

(Aase and Tanaka, 1991). Crop residues and soils are

often spectrally similar and differ only in amplitude at a

given wavelength. Shortly after harvest, crop residues

are frequently much brighter than the soil, but as the

residues weather and decompose they may be either

brighter or darker than the soil (Nagler et al., 2000).

This makes discrimination between crop residues and

soil difficult or nearly impossible using reflectance

techniques in the visible and near infrared wavelengths.
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Fig. 1. Location of test site and crops in 2003. Crop identification

based on classification of Landsat TM imagery by USDA National

Agricultural Statistics Service (NASS, 2004). Classification accuracy

exceeded 90%.
Efforts to enhance the discrimination of crop

residues from soil have led to numerous spectral

indices that incorporate the Landsat Thematic Mapper

(TM) shortwave infrared bands (McNairn and Protz,

1993; van Deventer et al., 1997; Qi et al., 2002).

However, these broadband spectral indices were only

weakly correlated to crop residue cover (Daughtry et al.,

2005).

An alternative approach for discriminating crop

residues from soils is based on a broad absorption band

near 2100 nm that is associated with cellulose and

lignin in crop residues (Daughtry, 2001). The cellulose

absorption index (CAI) was linearly related to crop

residue cover in laboratory and field studies using

ground-based spectroradiometer (Nagler et al., 2003;

Daughtry et al., 2004). Tillage intensity classes were

correctly identified in >90% of the fields in a limited

test using aircraft hyperspectral imagery (Daughtry

et al., 2005). For repetitive regional surveys of soil

management practices satellite hyperspectral imagery is

needed. However, the CAI algorithm has not been

rigorously evaluated using satellite hyperspectral

imaging systems. The Hyperion imaging spectrometer

(http://eol.gsfc.nasa.gov/Technology/Hyperion.html)

on the NASA Earth Observing-1 (EO-1) spacecraft

appears to provide the appropriate spectral and spatial

resolution for assessing crop residue cover.

Our objectives were: (1) to evaluate several spectral

indices for estimating crop residue cover using the

Landsat TM and Hyperion imaging spectrometer data

over an agricultural region and (2) to classify tillage

intensity in agricultural fields based on spectral

measures of crop residue cover.

2. Materials and methods

2.1. Site description

The test site was a 7.5 km � 60 km area that

included portions of Story, Boone and Hamilton

counties in central Iowa (Fig. 1). Soils were formed

in calcareous loamy glacial till on till plains and glacial

moraines. Typical soil catena included Clarion (fine-

loamy, mixed, superactive and mesic Typic Hapludoll),

Nicolett (fine-loamy, mixed, superactive and mesic

Aquic Hapludoll) and Webster (fine-loamy, mixed,

superactive and mesic Typic Endoaquoll). Mean annual

air temperature is 9 8C and mean annual precipitation is

866 mm. Corn and soybeans were grown on >96% of

the cropland in 2003 (NASS, 2004). Planting progress

for central Iowa was extracted from Iowa Crops and

Weather (Iowa Agricultural Statistics, 2004). Expected
residue cover was estimated as fR = 1 � exp(�AmM),

where fR is the residue cover fraction, Am the residue

area per unit mass (ha/kg) and M is the residue mass per

unit area (kg/ha). Am = 0.0004 ha/kg for corn and

0.0006 ha/kg for soybean (Gregory, 1982). Expected

residue mass was calculated using reported 2003 grain

yields (NASS, 2004) and harvest indices (grain mass/

total above ground mass) of 0.52 for corn (Bullock et al.,

1988) and 0.6 for soybean (Kollenkark et al., 1982).

2.2. Field methods

Crop residue cover was measured during 10–12 May

2004 in 35 corn and 19 soybean fields >20 ha. Two

random locations per field were selected that were

>100 m from field edges, >100 m apart (total number

of sites = 108) and relatively homogeneous. At each

site, a 15.2 m line-point transect with 100 evenly spaced

markers was stretched diagonally across the rows and

the number of markers intersecting crop residue was

counted (Morrison et al., 1993). For the second

measurement at each site, one end of the line-point

transect was rotated�908 in azimuth and the number of

markers intersecting crop residue was recounted.

http://eol.gsfc.nasa.gov/Technology/Hyperion.html
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Vertical and oblique photographs plus notes on tillage

condition were acquired at each site. A wide area

augmented system (WAAS) enabled GPS receiver

(Etrex Vista, Garmin International, Olathe, KS, USA)

recorded the position of the center of each pair of line-

point transects. Fields that had both corn and soybean

residues were identified according to the crop grown in

2003.

2.3. Remotely sensed data

Landsat TM 5 data were acquired on 12 June 2004,

geo-registered, and converted to apparent reflectance

(ERDAS, 2003). All pixels that had a majority of their

area within 45 m of the center of each pair of line-point

transect measurements were selected and mean

reflectance in each band was calculated. Four spectral

indices designed for detecting crop residues using mean

normalized difference tillage index (NDTI; van

Deventer et al., 1997);

NDTI ¼ TM5� TM7

TM5þ TM7
(1)

normalized difference index (NDI; McNairn and Protz,

1993);

NDI5 ¼ TM4� TM5

TM4þ TM5
(2)

NDI7 ¼ TM4� TM7

TM4þ TM7
(3)

and normalized difference senescent vegetation index

(NDSVI; Qi et al., 2002);

NDSVI ¼ TM5 � TM3

TM5 þ TM3
(4)

where TM3, TM4, TM5 and TM7 are reflectance in the

Landsat TM band 3 (630 nm), band 4 (760–900 nm),

band 5 (1550–1750 nm) and band 7 (2080–2350 nm),

respectively.

The Hyperion imaging spectrometer on the NASA

Earth Observing-1 spacecraft provides 220 bands at

�10 nm intervals over the 400–2500 nm wavelength

region with a 30 m spatial resolution (http://eol.gsfc.-

nasa.gov/Technology/Hyperion.html). Each scene cov-

ers a 7.5 km � 100 km area. Hyperspectral images were

acquired over the test site on 3 May and 4 June 2004.

Each image was geo-registered with a root mean square

error (rmse) of <1 pixel (<30 m). Three targets within

the scene (a lake, an athletic field and parking lot) were

used with the generic spectral signatures from the

ERDAS/Imagine spectral library (ERDAS, 2003) to

convert the digital numbers (DN) into apparent
reflectance. All pixels that had a majority of their area

within 45 m of the center of each pair of line-point

transect measurements were selected and the mean

reflectance spectrum for each location was calculated.

The CAI (Daughtry, 2001) was calculated using the

corrected Hyperion data as follows:

CAI ¼ 0:5ðR2:0 þ R2:2Þ � R2:1; (5)

where R2.0 is the mean reflectance in three bands

centered at 1982, 1992 and 2002 nm, R2.1 the mean

reflectance in three bands centered at 2103, 2113 and

2123 nm and R2.2 is the mean reflectance in three bands

centered at 2194, 2204 and 2214 nm.

Crop residue cover was described as a function of the

various spectral indices using linear regression analysis

(Proc REG; SAS Inst, 2004). Classification accuracy

was evaluated using the Kappa analysis technique

(Congalton and Green, 1999).

3. Results and discussion

The distribution of crops in the test site in 2003 as

reported by the USDA National Agricultural Statistics

Service (NASS) is shown in Fig. 1. Corn and soybeans

accounted for >96% of the cropland. Mean 2003 grain

yield was 10.5 Mg/ha for corn and 2.1 Mg/ha for

soybeans in the Central Crop Reporting District of Iowa

(NASS, 2004). Expected average crop residue cover

after harvest was 98% for corn fields and 56% for

soybean fields (Gregory, 1982). However, by mid-May

2004 when we measured residue cover with the line-

point transect, decomposition and tillage had reduced

mean crop residue cover to 41 � 20% for corn and

21 � 19% for soybean fields. Crop residue cover

measured with line-point transects in these fields varied

greatly and ranged from 8 to 84% for corn and 6 to 76%

for soybeans. Clearly, tillage practices used by each

farmer significantly influenced the amount of crop

residue cover in fields. Thus, crop residue cover

estimated for the average condition of a crop reporting

district failed to capture the actual variability in crop

residue cover from field to field, even within a relatively

homogeneous agricultural region.

Crop residue cover changed rapidly during April,

May and June as the fields were prepared and planted.

Warm dry weather conditions in mid-April 2004

allowed farmers in central Iowa to accelerate seed

bed preparation and begin corn planting ahead of

normal (Table 1). Spring planting progressed rapidly

until rains slowed field activities in the later half of May.

In central Iowa, 93% of the corn area was planted by

May 9 and 95% of the soybean area was planted by May

http://eol.gsfc.nasa.gov/Technology/Hyperion.html
http://eol.gsfc.nasa.gov/Technology/Hyperion.html
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Table 1

Field work and crop progress in central Iowa 2004 (Iowa Crops and

Weather, 2004)

Week

ending

Seed bed

preparation

(%)

Corn

planted

(%)

Soybean

planted

(%)

Days

suitable

Rain

(mm)

April 18 73 24 0 6.2 11

April 25 79 48 0 2.8 43

May 2 92 80 6 5.0 3

May 9 95 93 53 6.1 7

May 16 >99 >99 84 3.5 18

May 23 100 100 95 3.2 140

May 30 100 100 96 0.6 48

June 6 100 100 100 4.2 2

June 13 100 100 100 3.6 32
23 (Table 1). After a field was planted, its residue cover

should have remained stable for several weeks as the

crop emerged and began to grow.

Crop residue cover was weakly related to three of the

four Landsat TM residue/tillage indices (Fig. 2). The

NDSVI accounted for half of the variation in measured

crop residue cover. Similar results were reported using

these Landsat TM residue/tillage indices in Minnesota

(Thoma et al., 2004) and Maryland (Daughtry et al.,
Fig. 2. (A–D) Crop residue cover as functions of Landsat residue/

tillage indices.
2005). The quasi-physical Crop Residue Index Multi-

spectral model (Baird and Baret, 1997), a linear mixing

model of composite soil and crop residue reflectance,

was also weakly related to residue cover (Thoma et al.,

2004). Landsat-based spectral indices were generally

poor predictors of crop residue cover for the conditions

in this study.

In order to evaluate CAI for assessing crop residue

cover, data were divided by fields into calibration

(n = 38) and test (n = 70) data sets. For the calibration

data set, crop residue cover was linearly related to CAI

with coefficients of determination (r2) of 0.85 for the

May and 0.77 for the June Hyperion data (Fig. 3).

Soybean fields typically had lower residue covers than

corn fields; however, crop type did not significantly

affect the regression line (i.e., slopes were not

significantly different at a = 0.1). Slopes in Fig. 3 were

similar (within 10%) to that reported for ground-based

spectroradiometer data in Maryland (Daughtry et al.,

2005). Regression equations from the calibration data

(Fig. 3) were used to predict residue cover for the test

data (Fig. 4). Although there was considerable scatter

about the 1:1 line, intercepts did not differ significantly

from 0 and slopes were not significantly greater than 1.0

(a = 0.1). Root mean square errors were 9.5–11.7% for

both calibration (Fig. 3) and test (not shown) data sets.

Slopes and intercepts for the combined data sets

(n = 108) were not significantly different (a = 0.1) from

slopes and intercepts of the calibration data sets

(n = 38). A portion of the scatter in Figs. 3 and 4

may be attributed to changes in residue cover that

occurred between the time of the Hyperion data
Fig. 3. Crop residue cover as a function of CAI for Hyperion data

acquired on: (a) 3 May 2004 and (b) 4 June 2004. Calibration data set

(n = 36).
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Fig. 4. Measured and predicted crop residue cover using Hyperion

data acquired on: (a) 3 May 2004 and (b) 4 June 2004. Test data set

(n = 72).

Fig. 5. Cropland classified into four crop residue cover categories

using CAI from Hyperion data for 3 May 2004.
acquisitions and the time of ground observations of

residue cover. In central Iowa, 11.6 days were suitable

for field work during the 2 weeks ending 9 May

(Table 1). Seed bed preparation was nearly complete

and >80% of the corn had been planted before the

Hyperion overpass on 3 May 2004. Nearly all the corn

and soybean cropland in central Iowa was planted

before the 4 June 2004 Hyperion overpass. Of the 54

fields that we observed, 51 were planted by 10–12 May

2004.

Table 2 presents a classification matrix for four

residue cover classes using CAI for the May and June

Hyperion data. Both May (Z score = 8.0) and June (Z

score = 5.9) classifications were significantly better

than a random classification using the Kappa analysis

technique (Congalton and Green, 1999). Classification

matrices for fewer classes can be determined by

combining classes in Table 2. CTIC (2004) defined

the following tillage categories based on crop residue

cover after planting: intensive tillage as <15% residue
Table 2

Classification matrix for four residue cover classes derived from Hyperion data for 3 May and 4 June 2004

Measured cover

class (%)

n 3 May 4 June

<15%a 15–30%a 30–60%a �60%a <15%a 15–30%a 30–60%a �60%a

<15 27 15 12 0 0 11 16 0 0

15–30 24 1 18 5 0 1 19 4 0

30–60 41 0 17 24 0 0 16 24 1

�60 16 0 0 3 13 0 0 9 7

Correct classifications are shown in bold (total n = 108).
a Remotely sensed residue cover classes.
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Table 3

Crop residue cover classes derived from Hyperion data for 3 May and 4 June 2004

Crop in 2003 3 May 4 June

<15%a 15–30%a 30–60%a �60%a <15%a 15–30%a 30–60%a �60%a

Corn 4791 9831 11271 1398 4549 9441 12005 1225

Soybean 7223 8362 4883 364 6888 8344 5338 234

Other 559 692 391 15 496 713 430 15

Total 12573 18885 16545 1777 11933 18498 17772 1475

Area (%) 25.3 37.9 33.2 3.6 24.0 37.2 35.8 3.0

All values are in hectares.
a Remotely sensed residue cover classes.
cover, reduced tillage as 15–30% residue cover and

conservation tillage as �30% residue cover. In Table 2,

we divided the conservation tillage category into 30–60

and �60% residue cover classes to identify fields

managed for high residue cover (and possibly high C

sequestration).

Percent correct classifications for multiple residue

cover classes improved as the number of classes

decreased. The difference in accuracy between the May

and June classifications were not significant using the

Kappa analysis technique (Congalton and Green, 1999).

Accuracies were 57–65% for discriminating among

four tillage categories. Accuracies were 66–68% for

discriminating among intensive, reduced and conserva-

tion tillage categories. For discriminating two cate-

gories (i.e., conventional or conservation tillage,<30 or

�30% cover), accuracies were 80–82%. Thoma et al.

(2004) showed that various methods of predicting crop

residue cover using Landsat data had accuracies of 61–

69% which were as good or better than the Tillage

Transect Survey (TTS) estimates when fields were

grouped into only two residue cover categories. Human

observers used in the TTS often had difficulty

distinguishing small differences in residue cover near

the 30% threshold used to discriminate conventional

and conservation tillage (Thoma et al., 2004). The

oblique viewing angles typically used by the TTS

observers probably contributed to the relatively poor

classification accuracy. Remote sensing techniques can

provide a uniform methodology and cover large areas

completely rather than sampling a few fields along

transects in selected counties.

Crop residue cover for both Hyperion scenes was

estimated using the calibration equations (Fig. 3) and

summarized in four residue classes (Fig. 5). Data from

crop type in 2003 (Fig. 1) and crop residue cover after

planting in 2004 (Fig. 5) were combined and

summarized as the areas in four residue cover classes

for each crop (Table 3). Since the May and June
classifications were not significantly different, only the

May data will be discussed. Overall, 37% of the

cropland was classified as conservation tillage (�30%

cover), 38% was classified as reduced tillage (15–30%

cover) and 25% was classified as intensively tilled

(<15% cover). For cropland that was corn in 2003, 46%

was classified as conservation tillage after planting in

2004 and only 18% as intensive tillage. Although

soybean produced much less crop residue mass than

corn, 25% of the cropland planted to soybeans in 2003

was classified as conservation tillage after planting in

2004 and 35% as intensive tillage. Shifts in soil tillage

intensity over time and space could be tracked by

combining geo-referenced information on the previous

crop type with geo-referenced information on crop

residue cover after planting.

4. Conclusions

While remote sensing cannot directly monitor soil C

dynamics, it can provide crucial information associated

with above ground net primary production including

land use, crop type, crop phenology, leaf area index and

absorbed photosynthetically active radiation. Crop

residue cover and thus soil tillage intensity may be

determined by advanced remote sensing techniques.

These inputs for soil C models, when implemented

within a geographic information system, provide

important boundary conditions on the dynamics of soil

organic matter across landscapes.
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